Compounds containing Platinum-Carbon Bonds. Part V. ${ }^{1}$ Crystal and Molecular Structure of a Carbenoid Complex of Platinum(iv), [PtCl_{2} $\left\{\mathrm{C}\left(\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}\right)(\mathrm{NHMe})\right\}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{ClO}_{4} \dagger$

By Robert Walker and Kenneth W. Muir," Department of Chemistry, University of Glasgow, Glasgow G12 800

The molecular structure of the title complex has been determined by single-crystal X-ray analysis. Crystals are monoclinic, space group $P 2_{1} / a, a=13 \cdot 451(2), b=21 \cdot 381(5), c=13 \cdot 368(2) \AA, \beta=130 \cdot 73(1)^{\circ}, Z=4$. The structure was solved by the heavy-atom method and refined by full-matrix least-squares to $R 0.048$ for 3811 diffractometric intensity data corrected for absorption.
In each complex cation mutually cis chlorine atoms, trans-phosphorus atoms, and cis-carbenoid and -phenyl carbon atoms define an octahedron about the platinum atom. The metal-ligand distances are: Pt-P 2.388(4). $\mathrm{Pt}-\mathrm{C}(\mathrm{Ph}) 2.034(11), \mathrm{Pt}-\mathrm{C}$ (carbenoid) $1.973(11) . \mathrm{Pt}-\mathrm{Cl} 2.415(4)$ trans to phenyl, and $2.372(3) \AA$ trans to carbenoid.

Recently Chatt et al. have shown that the platinum(II) carbenoid complexes cis- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}\left(\mathrm{NHR}^{1}\right)\left(\mathrm{NHR}^{2}\right)\right\}\left(\mathrm{PEt}_{3}\right)\right]$ and trans- $\left[\mathrm{PtCl}\left\{\mathrm{C}\left(\mathrm{NHR}^{1}\right)\left(\mathrm{NHR}^{2}\right)\right\}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{ClO}_{4}\right.$, where $\mathrm{R}^{\mathbf{1}}=\mathrm{R}^{2}=\mathrm{Me}$, undergo oxidative addition with chlorine to give the expected platinum(iv) carbenoid compounds. However, when $\mathrm{R}^{1}=\mathrm{Me}$ or Et and $\mathrm{R}^{2}=\mathrm{Ph}$ the reaction appears to follow a different course, involving 2 -metallation and 4 -chlorination of the phenyl ring; thus the product from trans$\left\{\mathrm{PtCl}\{\mathrm{C}(\mathrm{NHMe})(\mathrm{NHPh})\}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{CClO}_{4}\right.$ was formulated as the platinum(Iv) species (1). ${ }^{2}$ Verification of this structure by X-ray analysis seemed desirable, since reactions involving co-ordinated carbenoid ligands are
\dagger No reprints available.
${ }^{1}$ Part IV, Lj. Manojlović-Muir and K. W. Muir, J.C.S. Dalton, 1974, 2427.
${ }^{2}$ J. Chatt, R. L. Richards, and G. H. D. Royston, personal communication; see also ref. 9.
relatively unusual. ${ }^{3}$ Moreover, metallation occurs more commonly under reducing conditions. ${ }^{4}$

(1)

We also expected that a determination of the bond lengths in (1) would allow us to compare the relative
${ }^{3}$ F. A. Cotton and C. M. Lukehart, Progr. Inorg. Chem., 1973, 16, 487; D. J. Cardin, B. Çetinkaya, M. J. Doyle, and M. F. Lappert, Chem. Soc. Rev., 1973, 2, 99.
${ }^{4}$ A. J. Cheney, W. S. McDonald, K. O'Flynn, B. L. Shaw, and B. L. Turtle, J.C.S. Chem. Comm., 1973, 128, and refs. therein.
trans-influences of σ-phenyl and carbenoid ligands in platinum(IV) complexes. This work thus forms part of our continuing investigation of the trans-influence and bonding of carbon donor ligands in platinum complexes. ${ }^{1,5-8}$

A preliminary account of this work has already been published. ${ }^{9}$ Prior to that, structural data were available only for carbenoid complexes of metals in oxidation states 0 to $\mathrm{II}{ }^{3}$ However, the molecular structure of a carbenoid complex of rhodium(III) has been described recently. ${ }^{10}$

EXPERIMENTAL

Crystal Data. $-\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pt}, \quad M=769 \cdot 4$, Monoclinic, $a=13.451(2), b=21.381(5), c=13.368(2) \AA, \beta=$ $130.73(1)^{\circ}, \quad U=2913 \AA^{3}, \quad Z=4, \quad D_{\mathrm{c}}=1.754 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=1520$. Mo- $K_{\alpha} \quad$ radiation, $\lambda=0.71069 \quad \AA$; $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=55.7 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / a$ from systematic absences ($h 0 l$ for $h=2 n+1,0 k 0$ for $k=2 n+1$) and subsequent successful refinement.

Measurements.-The crystals are white air-stable prisms. The monoclinic Laue symmetry $2 / m$, systematic absences, and approximate unit-cell dimensions were obtained from a preliminary photographic study. Final values of the cell parameters and the intensities of all independent reflections with $\theta\left(\mathrm{Mo}-K_{\alpha}\right) \leqslant 25^{\circ}$ were measured on a Hilger and Watts Y 290 four-circle diffractometer by standard methods previously described in detail. ${ }^{11}$ The crystal employed was of equant habit and it was set with its c axis approximately coincident with the diffractometer ϕ axis. To check crystal and electronic stability the intensities of three strong reflections were periodically remeasured during the experiment. Apparently random fluctuations of up to $\pm 7 \%$ of the mean values were observed.

The integrated intensities were derived in the way described previously; ${ }^{11}$ the factor q was assigned a value of 0.05 . They were scaled according to the variation of the intensities of the standard reflections. For 45 reflections the maximum counting rate exceeded 8×10^{3} counts s^{-1}. In order to correct for the resulting counting losses the intensities of all independent reflections with $\theta\left(\mathrm{Mo}-K_{\alpha}\right) \leqslant 8^{\circ}$ were remeasured at reduced X-ray generator settings. The coefficients of the equation $J=r I+s I^{2}$, where J and I are respectively the integrated intensities at reduced and normal generator settings, were obtained by the method of least squares. The corrected intensity was taken as J / r. The maximum counting loss correction was 30% of the final integrated intensity. Lorentz and polarisation factors were applied. A correction for absorption was made, using a Gaussian integration grid of $8 \times 8 \times 10$ points for the crystal, the dimensions of which were $0.3 \times 0.3 \times 0.3 \mathrm{~mm}$. The transmission factors on $\left|F_{0}\right|$ ranged from 0.50 to 0.57 .

A total of 3811 independent reflections with $I \geqslant 3 \sigma(I)$ were used in the analysis.

Structure Analysis.-The position of the platinum atom was derived from a Patterson synthesis, and the remaining

[^0]non-hydrogen atoms were located in subsequent electrondensity syntheses.

Table 1
Fractional atomic co-ordinates and vibrational parameters

	\boldsymbol{z}	y	z	$10^{3} \times U / \AA^{2}$
Pt	$0 \cdot 06375(3)$	0.15076(2)	$0 \cdot 90764(4)$	*
$\mathrm{P}(1)$	$-0.0711(3)$	$0.0743(1)$	$0.7399(3)$	
$\mathrm{P}(2)$	$0 \cdot 1967(3)$	$0 \cdot 2254(1)$	1.0816(3)	*
$\mathrm{Cl}(1)$	$0 \cdot 1733(4)$	0.1546(2)	0.5076(3)	
$\mathrm{Cl}(2)$	$0.0503(3)$	$0.0907(1)$	1.0477(3)	
$\mathrm{Cl}(3)$	-0.1275(3)	$0 \cdot 2105(1)$	0.8293(3)	
$\mathrm{Cl}(4)$	0.5046(4)	-0.0175(2)	1.2034(3)	${ }^{*}$
$\mathrm{O}(1)$	$0 \cdot 2278(24)$	$0 \cdot 1157(12)$	$0 \cdot 4765(23)$	269(10)
$\mathrm{O}(2)$	$0 \cdot 2647(20)$	$0 \cdot 1749$ (9)	$0.6261(20)$	212(7)
$\mathrm{O}(3) \dagger$	$0 \cdot 1159(41)$	$0 \cdot 1106(19)$	$0.5370(38)$	210 (14)
$\mathrm{O}(4) \dagger$	$0 \cdot 0469(31)$	$0 \cdot 1569(12)$	$0 \cdot 4669$ (30)	155(10)
$\mathrm{O}(5) \dagger$	$0 \cdot 1208(40)$	$0 \cdot 1671(17)$	$0 \cdot 3861(41)$	206(14)
$\mathrm{O}(6) \dagger$	$0 \cdot 1703(31)$	$0 \cdot 2211$ (16)	$0 \cdot 4773$ (32)	189(12)
$\mathrm{C}(1)$	$0 \cdot 3617(17)$	$0 \cdot 2043(8)$	1-2087(17)	124(5)
$\mathrm{C}(2)$	$0 \cdot 3816(20)$	$0 \cdot 1579(9)$	$1 \cdot 3040$ (20)	139(7)
$\mathrm{C}(3)$	$0 \cdot 2038(29)$	$0 \cdot 3018(15)$	1.0045(28)	199(11)
C(4)	$0 \cdot 2668(47)$	$0 \cdot 3397(19)$	1.0497(46)	284(21)
C(5)	$0 \cdot 1236(15)$	$0 \cdot 2458$ (7)	1-1499(15)	102(4)
C(6)	$0 \cdot 2006(17)$	0.2937(8)	1-2691(17)	121(5)
$\mathrm{C}(7)$	-0.1340(16)	$0 \cdot 1013(7)$	$0 \cdot 5789$ (16)	112(5)
C(8)	$-0.2192(20)$	$0 \cdot 0619(10)$	$0 \cdot 4574$ (19)	144(6)
$\mathrm{C}(9)$	-0.2104(16)	$0.0552(8)$	$0 \cdot 7307(15)$	109(5)
$\mathrm{C}(10)$	$-0.3066(19)$	0.0098(9)	$0 \cdot 6365$ (18)	134(6)
C(1)	$0 \cdot 0078(12)$	$-0.0003(6)$	0.7693 (12)	83(3)
$\mathrm{C}(12)$	$0 \cdot 0962(15)$	$-0.0071(7)$	0.7345 (15)	107(4)
C(13)	$0 \cdot 2283$ (9)	$0 \cdot 1085(4)$	$0 \cdot 9625(9)$	$54(2)$
$\mathrm{C}(14)$	$0 \cdot 2996(10)$	$0 \cdot 0617(5)$	1.0553(10)	62(2)
C(15)	$0 \cdot 4138(11)$	$0 \cdot 0428$ (5)	1.0869(11)	72(3)
C(16)	$0 \cdot 4587(12)$	$0 \cdot 0687(5)$	1.0297(12)	77(3)
$\mathrm{C}(17)$	$0 \cdot 3850(11)$	$0 \cdot 1143(5)$	0.9327 (11)	72(3)
C(18)	$0 \cdot 2712(10)$	$0 \cdot 1339(4)$	$0 \cdot 9026(9)$	56(2)
C(19)	$0 \cdot 0846(10)$	$0 \cdot 1967$ (4)	$0 \cdot 7943$ (10)	60(2)
$\mathrm{C}(20)$	$0 \cdot 0168(13)$	$0 \cdot 2760$ (6)	$0 \cdot 6214$ (13)	90(4)
N(1)	$0 \cdot 0040$ (9)	$0 \cdot 2411$ (4)	$0 \cdot 7095(9)$	71(2)
N(2)	0.1887(8)	0.1792(4)	0.8073(8)	64(2)
* These atoms were assigned anisotropic temperature factors				
of the form $\exp \left[-2 \pi^{2} 10^{-4} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{i j} a_{i}{ }^{*} a_{j} * h_{i} h_{j}\right]$.				

The final values of the $U_{i j}$ parameters are:

	11	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Pt	459(\%)	535(2)	519(2)	24(2)	279(2)	42(2)
$\mathrm{P}(1)$	565(16)	787(18)	577(16)	--114(14)	317(14)	-64(14)
$\mathrm{P}(2)$	640 (17)	694(18)	802(20)	-76(14)	396(16)	-179(15)
$\mathrm{Cl}(1)$	894(23)	1068(26)	$715(19)$	-122(19)	483(18)	-231(18)
$\mathrm{Cl}(2)$	791(18)	733(17)	684(17)	12(14)	509(15)	92(13)
$\mathrm{Cl}(3)$	574(15)	792(18)	936(20)	186(14)	424(15)	110(16)
$\mathrm{Cl}(4)$	951(24)	996(23)	833(21)	475(20)	459(19)	249(18)
\dagger Occupancies of 0.5 were assigned to these atoms.						

The structure was refined by the method of full-matrix least-squares. The function minimised was $\Sigma w \Delta^{2}$, where $\Delta=\| F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right|$ and $w=4 F_{\mathrm{o}}{ }^{2} / \sigma\left(F_{\mathrm{o}}{ }^{2}\right)$. Atomic scattering factors were taken from ref. 12, except for those of platinum ${ }^{13}$ and hydrogen. ${ }^{14}$ Allowance was made for the anomalous scattering of the platinum, chlorine, and phosphorus atoms, by use of values for Δf^{\prime} and $\Delta f^{\prime \prime}$ from ref. 15.
${ }^{9}$ K. W. Muir, R. Walker, J. Chatt, R. L. Richards, and G. H. D. Royston, J. Organometallic Chem., 1973, 56, C30.
${ }_{10}$ P. B. Hitchcock, M. F. Lappert, and G. M. McLaughlin, J.C.S. Dalton, 1974, 68.

11 l. W. Muir, J. Chem. Soc. (A), 1971, 2663.
12 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
${ }^{13}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
${ }^{14}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
${ }_{15}$ D. T. Cromer, Acta Cry'st., 1965, 18, 17.

Refinement of the positional and isotropic vibrational parameters for all non-hydrogen atoms except platinum, which was assigned an anisotropic temperature factor, led

Table 2
Selected interatomic distances (\AA) and angles $\left(^{\circ}\right.$)
(a) Bond lengths

$\mathrm{Pt}-\mathrm{P}(1)$	2-384(3)	$\mathrm{Pt}-\mathrm{P}(2)$	2-392(3)
$\mathrm{Pt}-\mathrm{Cl}(2)$	2-372(3)	$\mathrm{Pt}-\mathrm{Cl}(3)$	$2 \cdot 415$ (4)
$\mathrm{Pt}-\mathrm{C}(19)$	1-973(11)	$\mathrm{Pt}-\mathrm{C}(13)$	$2 \cdot 034(11)$
$\mathrm{N}(1)-\mathrm{C}(19)$	1-327(13)	$\mathrm{N}(2)-\mathrm{C}(19)$	1-347(17)
$\mathrm{N}(1)-\mathrm{C}(20)$	1-496(18)	$\mathrm{N}(2)-\mathrm{C}(18)$	1-394(13)
$\mathrm{C}(13)-\mathrm{C}(14)$	1-38(1)	$\mathrm{Cl}(1)-\mathrm{O}(1)$	1-34(3)
$\mathrm{C}(14)-\mathrm{C}(15)$	1-36(2)	$\mathrm{Cl}(1)-\mathrm{O}(2)$	$1 \cdot 29$ (2)
$\mathrm{C}(15)-\mathrm{C}(16)$	$1 \cdot 36(2)$	$\mathrm{Cl}(1)-\mathrm{O}(3)$	$1 \cdot 43$ (5)
$\mathrm{C}(16)-\mathrm{C}(17)$	1-39(2)	$\mathrm{Cl}(1)-\mathrm{O}(4)$	1.41(4)
$\mathrm{C}(17)-\mathrm{C}(18)$	1-37(2)	$\mathrm{Cl}(1)-\mathrm{O}(5)$	1-31(4)
$\mathrm{C}(18)-\mathrm{C}(13)$	$1 \cdot 37(2)$	$\mathrm{Cl}(1)-\mathrm{O}(6)$	1.47(4)
Mean	1-373(7)	Mean	1-38(3)
$\mathrm{P}(1)-\mathrm{C}(7)$	1.82(2)	$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 49$ (3)
$\mathrm{P}(1)-\mathrm{C}(9)$	1.84(2)	$\mathrm{C}(9)-\mathrm{C}(10)$	1-44(3)
$\mathrm{P}(1)-\mathrm{C}(11)$	1.81(1)	$\mathrm{C}(11)-\mathrm{C}(12)$	1-54(3)
$\mathrm{P}(2)-\mathrm{C}(1)$	1-76(2)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.50 (3)
$\mathrm{P}(2)-\mathrm{C}(3)$	1.97(3)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.04(5)
$\mathrm{P}(2)-\mathrm{C}(5)$	1-78(2)	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.58(2)$
Mean	$1 \cdot 83(3)$	Mean	1-51(2)
$\mathrm{C}(15)-\mathrm{Cl}(4)$	$1 \cdot 760(12)$		
(b) Interbond angles			
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	88-2(1)	$\mathrm{Pt}-\mathrm{C}(19)-\mathrm{N}(2)$	114.8(4)
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{Cl}(3)$	90.8(1)	$\mathrm{N}(1)-\mathrm{C}(19)-\mathrm{N}(2)$	121(1)
$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{Cl}(2)$	89-2(1)	$\mathrm{C}(19)-\mathrm{N}(1)-\mathrm{C}(20)$	126(1)
$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{Cl}(3)$	88.7(1)	$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{C}(19)$	117(1)
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(13)$	90.9(3)		
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(19)$	91-2(3)	$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(7)$	112.1(4)
$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{C}(13)$	89.9(3)	$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(9)$	$109 \cdot 4(5)$
$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{C}(19)$	$91 \cdot 4(3)$	$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(11)$	114.9(4)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{C}(13)$	$95 \cdot 8(3)$	$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(1)$	116.1(5)
$\mathrm{Cl}(3)-\mathrm{Pt}-\mathrm{C}(19)$	$92 \cdot 8(3)$	$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(3)$	107-8(7)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{Cl}(3)$	91-2(1)	$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(5)$	$110 \cdot 5(5)$
$\mathrm{C}(13)-\mathrm{Pt}-\mathrm{C}(19)$	$80 \cdot 3(4)$	Mean	111•8(13)
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$	177.4(1)		
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{C}(19)$	176.0(3)	$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(9)$	109(1)
$\mathrm{Cl}(3)-\mathrm{Pt}-\mathrm{C}(13)$	172.9(8)	$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(11)$	107(1)
$\mathrm{Pt}-\mathrm{C}(13)-\mathrm{C}(14)$	126.9(6)	$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(11)$	104(1)
$\mathrm{Pt}-\mathrm{C}(13)-\mathrm{C}(18)$	112.8(4)	$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(3)$	105(1)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	120(1)	$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(5)$	110(1)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	118(1)	$\mathrm{C}(3)-\mathrm{P}(2)-\mathrm{C}(5)$	107(1)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	122(1)	Mean	107•0(9)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{Cl}(4)$	119(1)		
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{Cl}(4)$	119(1)	$\mathrm{P}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	123(1)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	120(1)	$\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	120(1)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	118(1)	$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	118(1)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	122(1)	$\mathrm{P}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	114(1)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{N}(2)$	123(1)	$\mathrm{P}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	130(2)
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{N}(2)$	115(1)	$\mathrm{P}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	117(1)
$\mathrm{Pt}-\mathrm{C}(19)-\mathrm{N}(1)$	124.5(6)	Mean	$120 \cdot 5(23)$

(c) Interionic non-bonded distances less than the sum of the appropriate van der Waals radii

$\mathrm{N}(2) \cdots \mathrm{Cl}\left(3^{\mathrm{I}}\right)$	3.29	$\mathrm{C}(6) \cdots \mathrm{C}\left(7^{\mathrm{IV}}\right)$	3.89
$\mathrm{Cl}(4) \cdots \mathrm{C}\left(8^{\mathrm{II}}\right)$	3.43	$\mathrm{C}(2) \cdots \mathrm{C}\left(10^{\mathrm{II}}\right)$	3.94
$\mathrm{C}(11) \cdots \mathrm{Cl}\left(2^{\mathrm{III}}\right)$	3.58	$\mathrm{C}(4) \cdots \mathrm{C}\left(12^{\mathrm{v}}\right)$	3.94
$\mathrm{C}(2) \cdots \mathrm{C}\left(20^{\mathrm{IV}}\right)$	$3 \cdot 64$	$\mathrm{C}(10) \cdots \mathrm{C}\left(10^{\mathrm{vI}}\right)$	3.97
$\mathrm{C}(6) \cdots \mathrm{C}\left(8^{\mathrm{IV}}\right)$	3.67		

Roman numerals refer to the following transformations of the co-ordinates in Table 1:

I $\frac{1}{2}+x, \frac{1}{2}-y, z$	IV $\frac{1}{2}+x, \frac{1}{2}-y, 1+z$
II $1+x, y, 1+z$	V $\frac{1}{2}-x, \frac{1}{2}+y, 2-z$
III $-x,-y, 2-z$	VI $-1-x,-y, 1-z$

* Not used in calculation of the mean.
to $R 0.078$. When allowance was made for the anisotropic thermal motion of the phosphorus and chlorine atoms R fell to 0.058 . It then became apparent from a difference synthesis that both the perchlorate anion and the ethyl
group containing $C(3)$ and $C(4)$ were disordered. Several disordered structural models were considered but none proved entirely satisfactory. In the model finally adopted no attempt was made to describe the disorder of the ethyl group. However six sites were assigned to perchlorate oxygen atoms. Two of these $[\mathrm{O}(1)$ and $\mathrm{O}(2)]$ were given population parameters of unity and the remaining four

Table 3

Mean planes

(a) Deviations (\AA) of atoms from least-squares planes. Atoms not used to define the plane are italicised.
Plane $(A): \mathrm{C}(19) 0.005, \mathrm{~N}(1)-0.002, \mathrm{~N}(2)-0.002, \mathrm{Pt}-0.001$, $C(18) 0.060, C(20)-0.015$
Plane (B) : $\mathrm{Pt}-0.007, \mathrm{C}(13) 0.023, \mathrm{C}(19)-0.020, \mathrm{Cl}(2)-0.015$, $\mathrm{Cl}(3) 0.018, P(1)-2.390, P(2) 2.385$
Plane (C) : Pt 0.011, C(13) -0.026, C(18) 0.034, C(19) 0.003, N(2) $-0.021, N(1) 0.004, C(20)-0.020$
Plane $(D): C(13) 0.009, C(14)-0.009, C(15)-0.004, C(16) 0.016$, $\mathrm{C}(17)-0.015, \mathrm{C}(18) 0.003$, Pt $0.165, N(2)-0.027, C l(4)-0.048$
(b) Equations of planes
(A) $1 \cdot 636 x+14 \cdot 679 y+6 \cdot 201 z=7 \cdot 947$
(B) $1 \cdot 781 x+14 \cdot 313 y+6 \cdot 250 z=7.951$
(C) $1 \cdot 460 x+14 \cdot 736 y+6 \cdot 310 z=8 \cdot 031$
(D) $0 \cdot 594 x+14 \cdot 896 y+6 \cdot 868 z=8.353$

A view of the cation of (1) showing the atomic numbering scheme
population parameters of 0.5 . The population parameters were not refined. Refinement of this model terminated at $R 0.048$ and $R^{\prime} 0.066$. In the final calculations fixed contributions for the scattering of the hydrogen atoms bonded to the nitrogen atoms, and to the phenyl and methylene carbon atoms [apart from those bonded to $C(3)]$, were added to the structure factors; the positions of the hydrogen atoms were deduced from those of the heavier atoms, assuming normal bond lengths and valency angles. In the final cycle of refinement no parameter shifted by >0.8 of its standard deviation (σ), except z of $\mathrm{O}(5)$ which shifted by $1 \cdot 1 \sigma$. Mean values of $w \Delta^{2}$ showed no consistent trend when analysed as a function either of $\left|F_{o}\right|$ or of $\sin \theta$, suggesting that the weighting scheme employed was satisfactory. In the final difference synthesis the extreme function values of $\mathbf{1} \cdot 1$ and $-1.5 \mathrm{e}^{-3}$ occurred in regions close to the platinum atom.

Final atomic parameters and a selection of functions derived from them are presented in Tables 1-3. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 21152 (23 pp., 1 microfiche).* A

[^1] issue.
view of the structure of the complex cation is shown in the Figure.

Computer programs used include the Hilger and Watts software package for the Y 290 diffractometer and the Edinburgh Regional Computer Centre version of J. M. Stewart's ' X-Ray ' 70 ' system.

DISCUSSION

The crystal structure is built of discrete $\left[\mathrm{PtCl}_{2}-\right.$ $\left\{\mathrm{C}\left(\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}\right)(\mathrm{NHMe})\right\}\left(\mathrm{PEt}_{3}\right)_{2}{ }^{+}$cations and perchlorate anions. Adjacent cations and anions appear to be well separated, but there are several contacts between different cations which are shorter than the sum of the van der Waals radii of the participating atoms (Table 2). The $\mathrm{N}(2) \cdots \mathrm{Cl}\left(3^{\mathrm{I}}\right)$ contact of $3 \cdot 29 \AA$ is short enough to represent the donor-acceptor distance in a weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond. ${ }^{16}$ Assuming that $\mathrm{N}(2)$ is in a state of $s p^{2}$ hybridisation (vide infra), and that the $\mathrm{N}-\mathrm{H}$ bond length is $1.0 \AA$, the $\mathrm{H} \cdots \mathrm{Cl}\left(3^{\mathrm{I}}\right)$ distance can be estimated to be ca. $2 \cdot 6 \AA$, which is appreciably shorter than $3.0 \AA$, the sum of the van der Waals radii of chlorine and hydrogen. However, the average $\mathrm{H} \cdots \mathrm{Cl}$ distance in $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds is $c a .2 \cdot 40 \AA \AA^{16}$ and in the neutron diffraction study of methylglyoxal bisguanylhydrazone dihydrochloride monohydrate values between $2 \cdot 17$ and $2.82 \AA$ were observed. ${ }^{17}$ The $\mathrm{N}(2)-\mathrm{H} \cdots \mathrm{Cl}\left(3^{\mathrm{I}}\right)$ angle is estimated to be 122° which is a value acceptable for hydrogen bonds of this type. ${ }^{16,17}$ The other nonbonded contacts in Table 2 all involve carbon atoms of the phosphine ethyl groups.

The perchlorate oxygen atoms are disordered. Two sites, $O(1)$ and $O(2)$, appear to have an occupancy of unity, and they subtend an angle of $108(1)^{\circ}$ at $\mathrm{Cl}(1)$. The $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ angles involving partially occupied oxygen sites range between $73(2)$ and $142(2)^{\circ}$. The mean $\mathrm{Cl}-\mathrm{O}$ distance $[1 \cdot 38(3) \AA]$ can be compared with the value ($1 \cdot 46 \AA$) typical of ordered perchlorate groups. ${ }^{18}$

Disorder also affects two of the phosphine carbon atoms, $C(3)$ and $C(4)$, giving rise to an unreasonable $\mathrm{C}(3)-\mathrm{C}(4)$ bond length of $1 \cdot 04(5) \AA$. It is therefore clear that, for the atoms which it involves, the disorder has led not only to systematic errors in the positional (and thermal) parameters, but also to underestimates of the standard deviations of these parameters. Hence, no weight should be attached to the formally significant differences which exist, inter alia, between the $\mathrm{P}-\mathrm{C}$ bond lengths involving $\mathrm{P}(2)$, or between the $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ angles within the perchlorate group.

Despite the disorder, and the rather large vibrational amplitudes of all the phosphine carbon atoms, the mean values of the $\mathrm{P}-\mathrm{C}$ and $\mathrm{CH}_{2}-\mathrm{CH}_{3}$ bond lengths and of the $\mathrm{Pt}-\mathrm{P}-\mathrm{C}, \mathrm{C}-\mathrm{P}-\mathrm{C}$, and $\mathrm{P}-\mathrm{C}-\mathrm{C}$ angles are in fair agreement with those we have observed in platinum(II) carbenoid complexes containing triethylphosphine ligands. ${ }^{1}$

There is no evidence that disorder has affected the platinum, chlorine, and phosphorus atoms, or any of the atoms of the chelate ligand. Therefore, we consider it
${ }^{16}$ W. C. Hamilton and J. A. Ibers, 'Hydrogen Bonding in Solids,' Benjamin, New York, 1968.
unlikely that the parameters of these atoms are subject to systematic errors. Furthermore, there are no significant correlations between the parameters of these atoms and those of the disordered atoms. We therefore conclude that the standard deviations of the ordered atoms are realistic estimates of the experimental errors.

The structure of the complex cation agrees with that predicted by Chatt et al. ${ }^{2}$ Mutually cis phenyl and carbenoid carbon atoms, trans-phosphorus atoms, and cis-chlorine atoms define a slightly distorted octahedron about the platinum atom. The constraint imposed by the chelate ring leads to a $\mathrm{C}(13)-\mathrm{Pt}-\mathrm{C}(19)$ angle of $80 \cdot 3(4)^{\circ}$, and also to a slight opening of the $\mathrm{C}(13)-\mathrm{Pt}-\mathrm{Cl}(2)$ and $\mathrm{C}(19)-\mathrm{Pt}-\mathrm{Cl}(3)$ angles to $95 \cdot 8(3)$ and $92 \cdot 8(3)^{\circ}$ respectively. Other angles subtended at the platinum atom by mutually cis ligand donor atoms are close to 90°.

The carbenoid carbon atom, $\mathrm{C}(19)$, is coplanar with the atoms $\mathrm{N}(1), \mathrm{N}(2)$, and Pt , to which it is directly bonded. The methyl carbon atom, $\mathrm{C}(20)$, attached to $\mathrm{N}(1)$, also lies in this plane. The mean $\mathrm{N}-\mathrm{C}$ (carbenoid) bond distance $[1 \cdot 337(10) \AA]$ is much shorter than the other $\mathrm{N}-\mathrm{C}$ bonds in the cation and is consistent with a bond order of ca. 1•7.3

The $\mathrm{Pt}-\mathrm{C}$ (carbenoid) bond distance $[1.973(11) ~ \AA]$ is $0.061(16) \AA$ shorter than $\mathrm{Pt}-\mathrm{C}(\mathrm{Ph})[2 \cdot 034(11) \AA]$. The latter distance is in turn $0.02 \AA$ shorter than the mean $\mathrm{Pt}^{\mathrm{IV}}-\mathrm{C}(\mathrm{Me})$ distance $(2.054 \AA)$ in several trimethylplatinum(Iv) complexes, ${ }^{19}$ and this difference can be almost entirely accounted for by the difference in covalent radii of $s p^{2}$ and $s p^{3}$ hybridised carbon atoms. The $\mathrm{Pt}-\mathrm{C}(\mathrm{Ph})$ bond thus appears to be single in character. It has been suggested that the order of a metal-carbon bond which is $0 \cdot 1 \AA$ shorter than the corresponding single bond will be ca. $1 \cdot 2 .{ }^{19}$ On this basis it may be argued that the shortening of the $\mathrm{Pt}-\mathrm{C}$ (carbenoid) bond is consistent with a bond order of ca. $1 \cdot 1$; such multiple character could arise from a small amount of $\mathrm{Pt}-\mathrm{C}$ (carbenoid) back donation.

From the lengths and coplanarity of the bonds involving the carbenoid carbon atom it may be concluded that the platinum-carbenoid bonding is predominantly that indicated by the canonical structure (1), in which the main interaction of the vacant p orbital of the $s p^{2}$ hybridised carbenoid carbon atom is with the filled p orbitals of the adjacent nitrogen atoms, which are also $s p^{2}$ hybridised. [The $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles at atoms $\mathrm{N}(1)$ $125.5(11)$, and $\mathrm{N}(2) 116.8(9)^{\circ}$, appear consistent with this view.] There also appears to be a minor contribution from a second canonical structure, in which platinum d electrons are donated to the vacant p orbital of the carbenoid carbon atom. The platinum-(Iv)-carbenoid bonding found here is thus very similar to that observed in cis- and trans $-\left[\mathrm{Pt}^{\mathrm{II}} \mathrm{Cl}_{2}\left\{\mathrm{C}\left(\mathrm{PhNCH}_{2}\right)_{2}\right\}\right.$ $\left.\mathrm{PEt}_{3}\right]^{1,8}$

The $\mathrm{C}-\mathrm{C}$ bond lengths in the phenyl ring bonded to

[^2]platinum do not differ significantly from their mean value of $1 \cdot 373(7) \AA\left(\chi^{2}=2 \cdot 7\right.$ on 5 degrees of freedom). The average internal $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle within the ring is $120 \cdot 0(7)^{\circ}$, and the ring is planar. The platinum and $\mathrm{Cl}(4)$ atoms are displaced respectively by $0 \cdot 17$ and $-0.05 \AA$ from the plane of the ring. The dihedral angle of 4.5° between the phenyl ring plane and the co-ordination plane of the carbenoid carbon atom results in a slight puckering of the five-membered chelate ring (see Table 3). The $\mathrm{C}-\mathrm{Cl}$ bond length $[1.760(12) \AA]$ is slightly longer than the corresponding value ($1.745 \AA$) in chlorobenzene. ${ }^{20}$

The $\mathrm{Pt}-\mathrm{Cl}(2)$ bond length $[2 \cdot 372(3) \AA]$ is $0.043(5) \AA$ shorter than $\mathrm{Pt}-\mathrm{Cl}(3)[2 \cdot 415(4) \AA]$, but $0.040(6) \AA$ longer than the mean $\mathrm{Pt}-\mathrm{Cl}$ distance $[2 \cdot 332(5) \AA]$ in trans $-\left[\mathrm{PtCl}_{4}\left(\mathrm{PEt}_{3}\right)_{2}\right]^{21}$ These differences suggest that in platinum(Iv) complexes the trans-influence of the carbenoid ligand is less than that of σ-phenyl but greater than that of chloride. The same trans-influence series has been established for platinum(II) complexes. Thus $\mathrm{Pt}^{[1-}-\mathrm{Cl}$ bond lengths trans to Cl^{-}and $\mathrm{C}\left(\mathrm{PhNCH}_{2}\right)_{2}$ are found to be $2 \cdot 303(5)$ and $2 \cdot 362(3) \AA$ respectively; the length of a $\mathrm{Pt}{ }^{\mathrm{II}-\mathrm{Cl}}$ bond trans to σ-phenyl has not yet been reported, but a value of $2 \cdot 398(4) \AA$ trans to σ-vinyl has been observed. ${ }^{8}$

As noted earlier, the atom $\mathrm{Cl}(3)$ may be involved in an interionic hydrogen bond. This atom may also participate in an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond with $\mathrm{N}(1)$, since $\mathrm{Cl}(3) \cdots \mathrm{N}(1)$ is $3 \cdot 13 \AA$. If it is assumed that $\mathrm{N}(1)$ is $s p^{2}$ hybridised and that $\mathrm{N}-\mathrm{H}$ is $1.0 \AA$, then estimates of $2.4 \AA$ for the $\mathrm{H} \cdots \mathrm{Cl}(3)$
distance and of 130° for the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ angle are obtained. The difference in the lengths of the $\mathrm{Pt}-\mathrm{Cl}(2)$ and $\mathrm{Pt}-\mathrm{Cl}(3)$ bonds could thus be ascribed to the involvement of $\mathrm{Cl}(3)$ in hydrogen bonding. However, $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds are believed to be rather weak, ${ }^{16}$ and we therefore consider this factor less important than the difference in the nature of the ligands trans to the bonds involved.

The mean $\mathrm{Pt}-\mathrm{P}$ bond length $[2 \cdot 388(4) \AA]$ is in good agreement with the corresponding value $[2 \cdot 393(5) \AA]$ for trans- $\left[\mathrm{PtCl}_{4}\left(\mathrm{PEt}_{3}\right)_{2}\right]^{.21} \quad$ In square-planar complexes of platinum(II), however, mutually trans $\mathrm{Pt}-\mathrm{P}$ bond lengths lie in the range $2 \cdot 27-2.32 \AA^{\circ} .^{5}$ The greater length of $\mathrm{Pt}-\mathrm{P}$ bonds in octahedral platinum(Iv) complexes is probably related to the presence of six, rather than eight, d electrons at the metal atom. In octahedral trans- $\left[\mathrm{M}^{\mathrm{rV}} \mathrm{Cl}_{4}\left(\mathrm{PR}_{3}\right)_{2}\right]$ complexes, where M is a third-row transition metal, addition of one d electron to M leads to a contraction of $0.05 \AA$ in the $\mathrm{M}-\mathrm{P}$ bond length. ${ }^{21}$ It is, however, remarkable that the lengths of the $\mathrm{Pt}-\mathrm{C}$ and $\mathrm{Pt}-\mathrm{Cl}$ bonds in the cation of (l) are nearly the same as those of comparable bonds in square-planar platinum(II) complexes.

We thank Dr. R. L. Richards for a gift of crystals and for bringing this problem to our attention, and the S.R.C. for a grant (to R. W.).
[4/1296 Received, 28th June, 1974]
${ }^{20}$ D. Andre, R. Fourme, and M. Renaud, Acta Cryst., 1971, B27, 2371.
${ }^{21}$ L. Aslanov, R. Mason, A. G. Wheeler, and P. O. Whimp, Chem. Comm., 1970, 30.

[^0]: ${ }^{5}$ B. Jovanović, Lj. Manojlović-Muir, and K. W. Muir, J.C.S. Dalton, 1974, 195.
 ${ }^{6}$ B. Jovanović, Lj. Manojlović-Muir, and K. W. Muir, J.C.S. Dalton, 1972, 1178.
 ${ }^{7}$ B. Jovanović and Lj. Manojlović-Muir, J.C.S. Dalton, 1972, 1176.
 ${ }^{8}$ Lj. Manojlovic-Muir and K. W. Muir, Inorg. Chinn. Acta, 1974, 10. 47.

[^1]: * See Notice to Authors No. 7, in J.C.S. Dalton, 1973, Index

[^2]: ${ }^{17}$ W. C. Hamilton and S. J. La Placa, Acta Cryst., 1968, B24, 1147.
 ${ }^{18}$ D. W. J. Cruickshank, J. Chem. Soc., 1961, 5486.
 ${ }^{19}$ M. R. Churchill, Perspectives in Structural Chem., 1970, 3, 91.

